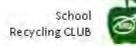
Composting 101: The Biology of Composting

Presented by Cindy Sterling, Organics Specialist The Northeast Recycling Council

What is NERC

- Nonprofit focused on minimizing waste, conserving natural resources, & advancing a sustainable economy
- 11-state area of focus: New England, Delaware, Maryland, New Jersey, New York, & Pennsylvania
- Membership organization: municipal & regional governments, nonprofit & private sectors Consider Joining!

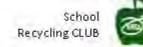


Back to the Earth

How to recycle organic material and how states are managing it in NH, VT and MA.

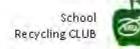
The Dirt on Dirt: Municipal Composting 101

Where Does It (Organics) Go?



Composting is:

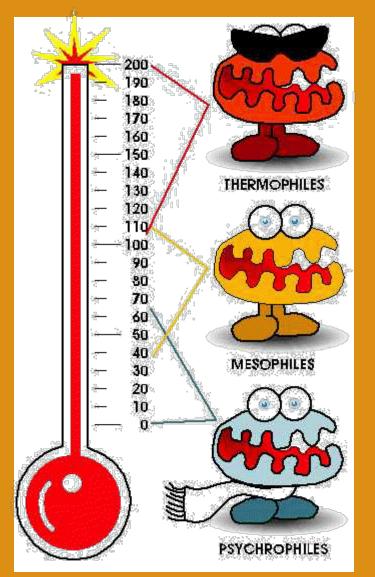
Taking organic matter (stuff that was once alive) ...



...and turning it into nutrient rich soil called Humus, which can be returned to the earth to grow new things.

Compost (käm'post)

A mixture of decomposing vegetation for fertilizing soil.


The aerobically decomposed remnants of organic matter.

Northeast Resource Recovery Association

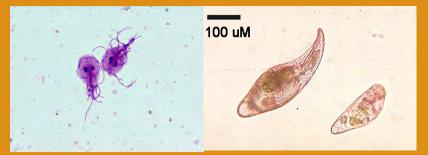
Or

Smallest Compost Critters

Microorganisms are the smallest Compost Critters.

These bacteria work at different temperatures.

The most efficient Critters need temperatures around 150° F.



Nematodes

Rotifera

Protozoa

Bacteria, including Actinomycetes

Smaller Compost Critters

Springtail

Fungus & Mold Mites

Fungi and Molds

Diptera (Flys)

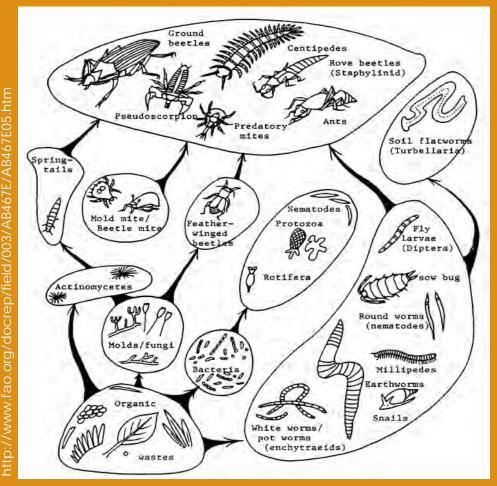
Ground Beetles

Slugs & Snails

Pseudoscorpions

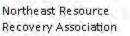
Millipedes & Centipedes

Northeast Resource Recovery Association School Recycling CLUB



Larger Compost Critters

Earthworms



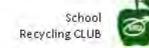
Compost Food Chain

From the ground, up ...

Composting is easy!

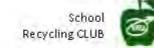
You <u>can</u> just pile up your organic materials and wait, and eventually...

...you'll get finished compost.


Northeast Resource Recovery Association School Recycling CLUB

Making compost happen <u>quickly</u> can be harder...

But it's not much harder than baking a cake.



What do we need to know to bake a cake?

The ingredients and how to put them together.

Compost Ingredients

"Greens" = Protein

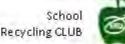
Things which are high in Nitrogen:

- * Vegetable and Fruit Scraps
- * Coffee Grounds
- * Fresh Grass Clippings
- * Manure

Scho

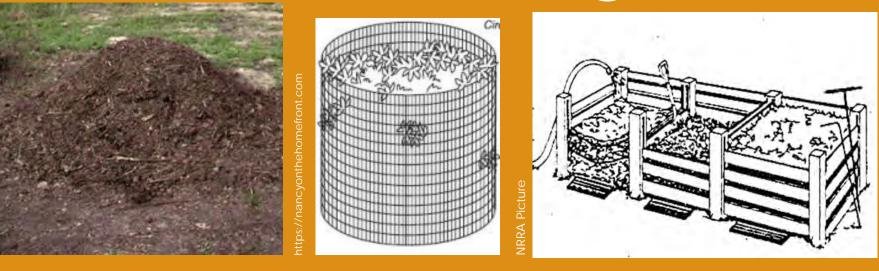
Recycling CLU

Compost Ingredients


"Browns" = Carbs

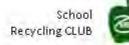
Things which are high in Carbon:

- * Autumn Leaves
- * Twigs & Wood Chips
- * Hay/Straw/Dry Grass
- * Paper Towels/Napkins
- * Cardboard & Paper


Putting it together...in Layers

Piles vs. Gadgets

http://www.zerowasteamerica.org/C mposting.htm


Northeast Resource Recovery Association School Recycling CLUB

Windrows

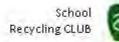


nttp://smallfarms.oregonstate.edu/agri cultural-composting-and-water-quality

Commercial Composting

<page-header>

Northeast Resource Recovery Association School Recycling CLUB

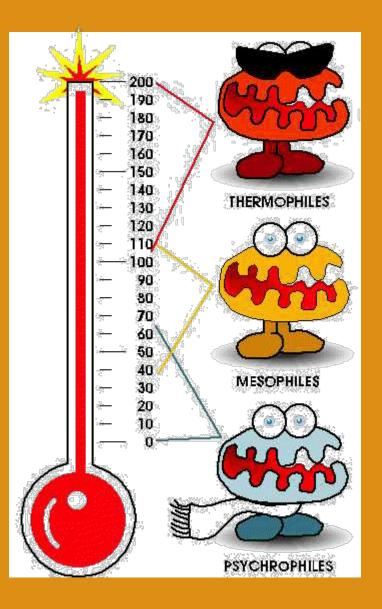

Vermi-Composting (WORMS!)

NRRA Phot

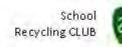
Animal Feed

Not <u>too</u> big to turn and aerate easily...

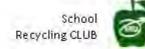
tp://www.cambridgegardenservices.co.uk/ga ening-tips/article/995-SHRUBS-AND-TREE-

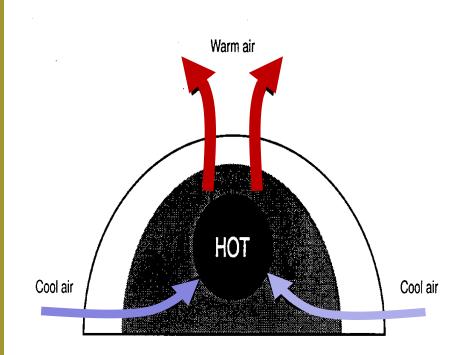

...but, big enough to get <u>WARM</u>.

Why is that important?


Northeast Resource Recovery Association School Recycling CLUB

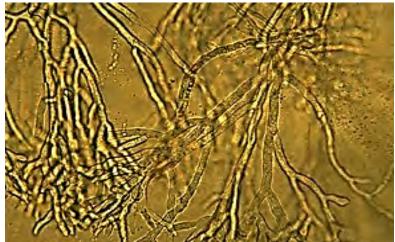
Remember: Our Smallest Compost **Critters** Need Heat These bacteria work at different temperatures. The most efficient Critters need temperatures around 150° F.


Remember: Composting happens <u>naturally</u>. It can be done <u>very</u> easily.

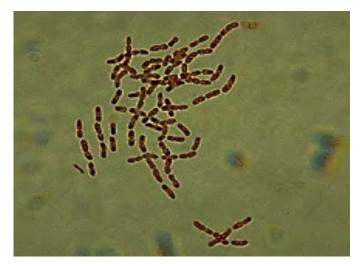

With a little work, you can make composting happen <u>faster</u>.

Northeast Resource Recovery Association Or

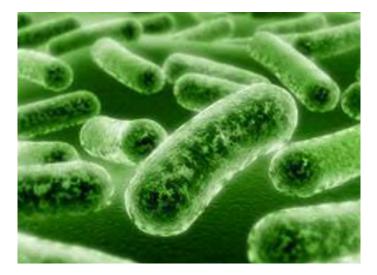
Thermophilic Composting



Fungi

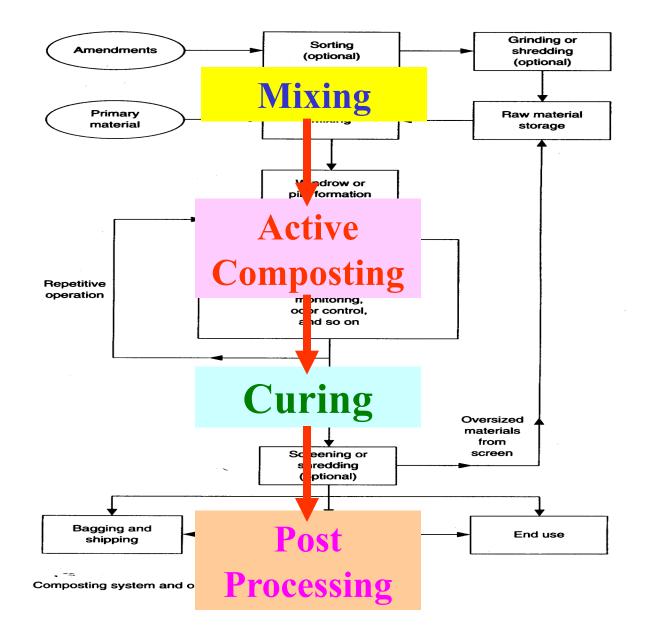






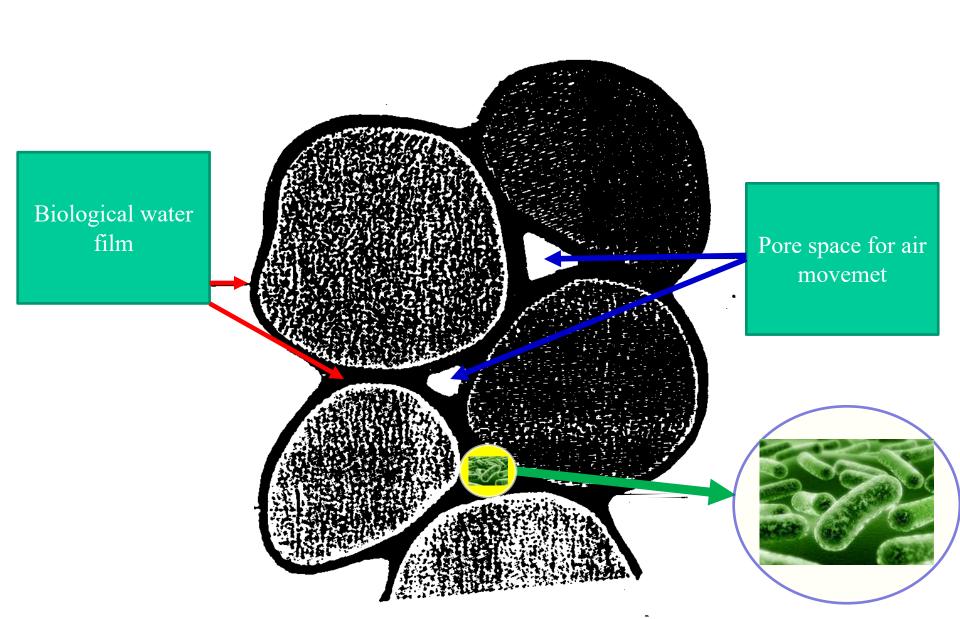
Bacteria

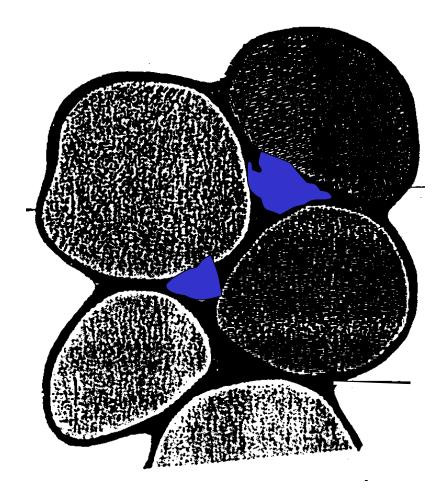
Actinomycetes



Composting Methodology

Mixing: Balancing Moisture & Oxygen





Need enough water

But not too much water

Recommended conditions for rapid composting

Condition	Reasonable range ^a	Preferred range
Carbon to nitrogen (C:N) ratio	20:1-40:1	25:1-30:1
Moisture content	40–65% ^b	5060%
Oxygen concentrations	Greater than 5%	Much greater than 5%
Particle size (diameter in inches)	1/8-1/2	Varies ^b
рН	5.5–9.0	6.5-8.0
Temperature (°F)	110150	130–140

- ^a These recommendations are for *rapid* composting. Conditions outside these ranges can also yield successful results.
- ^b Depends on the specific materials, pile size, and/or weather conditions.

Mixing: Balancing Nutrient Input

Balancing Nutrients

Carbon – Nitrogen Ratios

Material		<u>C:N</u>
Leaves Grass Clippings		40 - 80:1 19:1
Sewage Sludge:	Activated Digested	6:1 16:1
Humus	Digested	10:1
Food Wastes Cow Manure		15:1 20:1
Horse Manure		25:1
Fruit Wastes Corn Stalks		35:1
Straw		60:1 80:1
Bark		100 - 130:1
Paper Sawdust		170:1
Wood		500:1 700:1

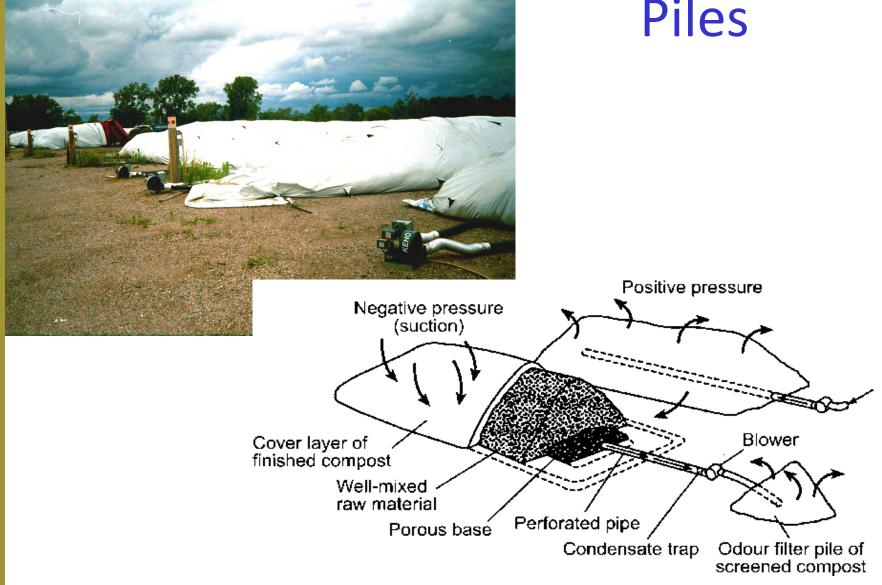
Recommended conditions for rapid composting

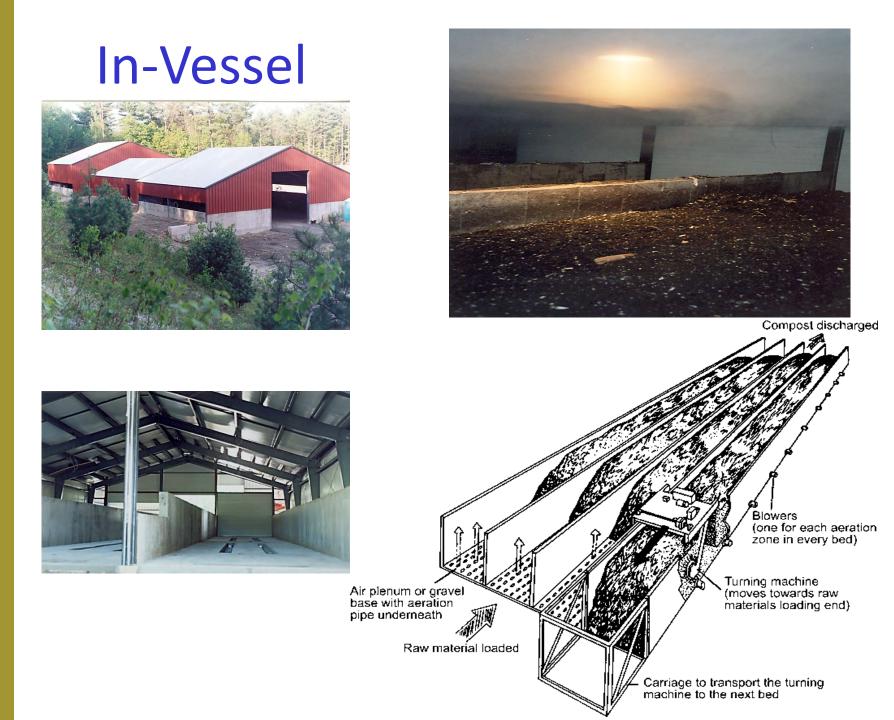
Condition	Reasonable range ^a	Preferred range		
Carbon to nitrogen (C:N) ratio	20:1-40:1	25:1-30:1		
Moisture content	40–65% ^b	5060%		
Oxygen concentrations	Greater than 5%	Much greater than 5%		
Particle size (diameter in inches)	1/8-1/2	Varies ^b		
рН	5.5–9.0	6.5-8.0		
Temperature (°F)	110150	130–140		

- ^a These recommendations are for *rapid* composting. Conditions outside these ranges can also yield successful results.
- ^b Depends on the specific materials, pile size, and/or weather conditions.

Choosing the Right Composting Methodology

- Aeration
- Mixing
- Size-reduction
- Climate
- Site constraints
- Neighbors
- Cost



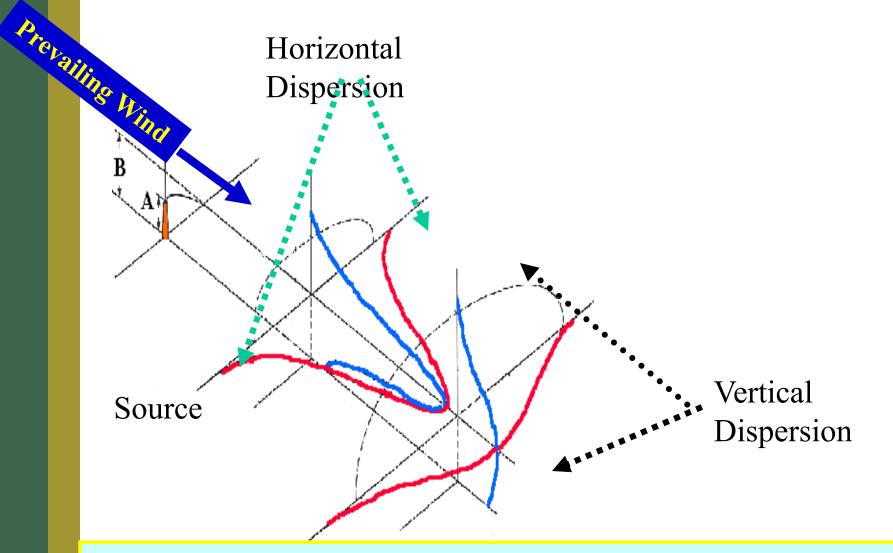


Windrow

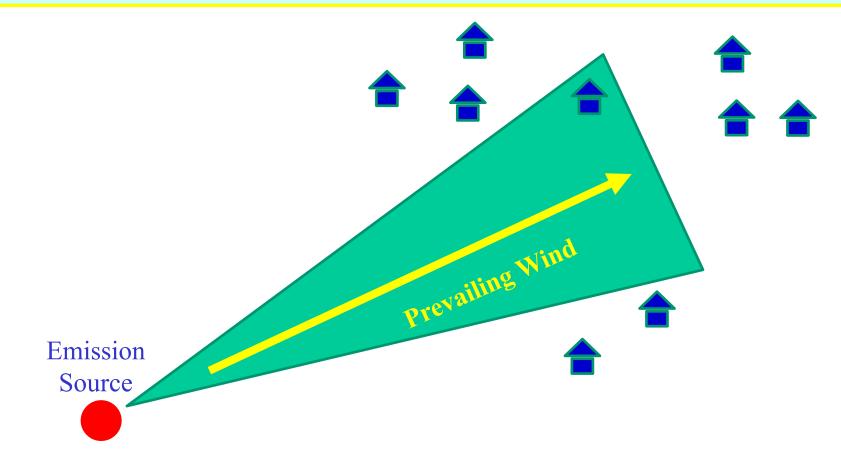
Static Aerated Piles

Location Choice

Exclusionary	Crite	ria Ma	trix						
For Compost facilties				Criteria					
Name	Size of Site	Wetlands	Ground Water < 2 ft	Public Wells	Private Wells	Surface Water	Adjacent Facilities	Adjacent Ag-Land	Sensitive Habitat
WWTP south	X	X	X	-	-	-	-	<u> </u>	-
WWTP north	-	•	-	-	-	-	-	-	-
McGuirk Stadium	X	X	X	-	-	-	-	-	-
Wysocki	-	-	-	-	-	-	-	-	-
Trailer Storage	-	-	-	-	-	-	-	-	-
Governor's Drive	-	-	-	-	-	-	-	-	-
Power Plant west	-	-	•	-	-	-	-	-	-
Power Plant east	-	-	•	-	-	-	-	-	-
Hadley farm	-	X	X	-	-	-	-	-	-
Belchertown	-	-	-	-	-	-	-	-	-
Deerfield	-	-	-	-	-	-	-	-	-

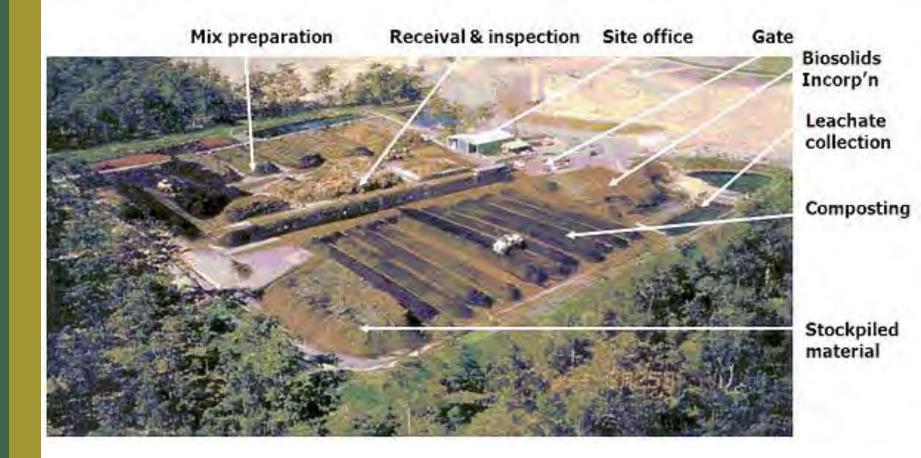


For Compost facilties								
		Criteria						Total
Name	Traffic	Adjacent	Visual	Noise	Odor	Wetlands	Floodplain	
	Safety	Land Use	Buffer	Buffer	Buffer	Impact	Impact	
WWTP north	3	2	2	2	2	2	2	15
Wysocki	1	2	2	2	2	3	3	15
Trailer Storage	2	3	3	3	3	1	3	18
Governors Drive	2	3	2	3	2	3	3	18
Old Power Plant west	2	1	2	2	2	3	3	15
Old Power Plant east	2	2	3	3	3	3	3	19
Belchertown	2	2	2	3	2	3	3	17
Deerfield	2	2	2	3	2	3	3	17
Existing Compost Site	2	1	3	2	1	3	3	15



Odor Screening Model

Odor Impact: Sensitive Receptors



Site Design: Appropriate Sizing

Traditional Community Compost Site Plan

 Gate & Receiving/Inspection
 Mix Preparation
 Composting
 Curing
 Screening

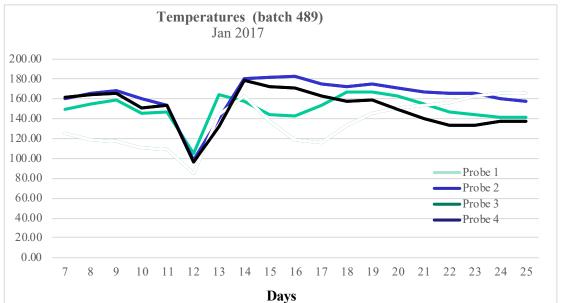
6. "Bagging"

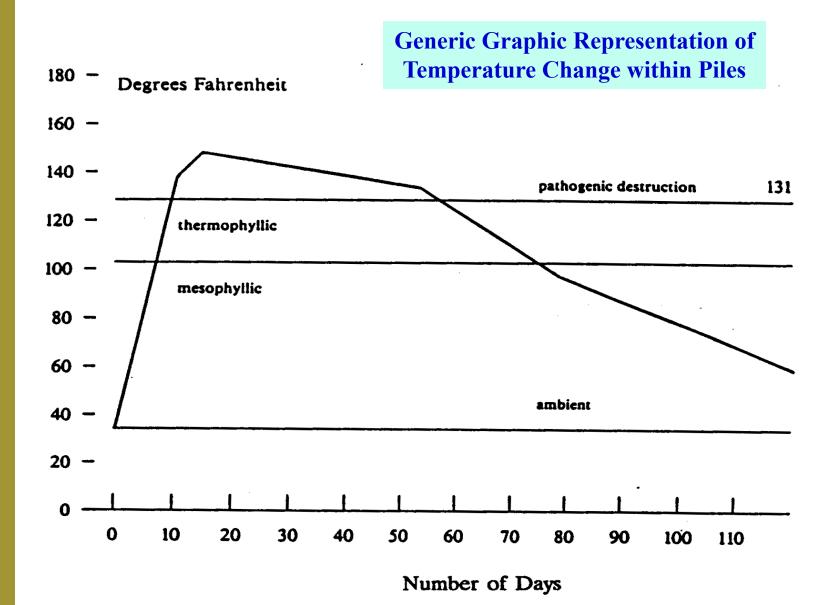
4-14 Chapter 4: Site Design & Management

Site Design: Avoid Standing Water

Managing the Through-put Rate

The Challenge: When is the Compost Ready?




The Need to Monitor

The Challenge : Who Will Buy the Compost?

- End Uses
 - ✓ Soil Amendment
 ✓ Growing Media
 Component
 - ✓ Blended Topsoil
 Component
 - ✓Mulch

- Markets
 - ✓Green Industries
 - ✓ Bulk Wholesalers
 - ✓ Public Agencies
 - ✓ Agriculture
 - ✓ Land Restoration

✓ Emerging Uses

The Challenge : How to Stay Open

• Odor - Cause of Closure of Most Compost Facilities

- Site Constraints More material throughput then is manageable by site size and compost methodology chosen
- Poor Business Plan Either undercapitalized and/or product quality did not bring in projected revenue.

The Additional Challenge: Sources of Carbon

Composting is a Controlled Process


MHS & Associates

Kills pathogens.

Avoids environmental & nuisance conditions.

Creates a compost that is safe to handle and use.

Allows for revenues to exceed costs.

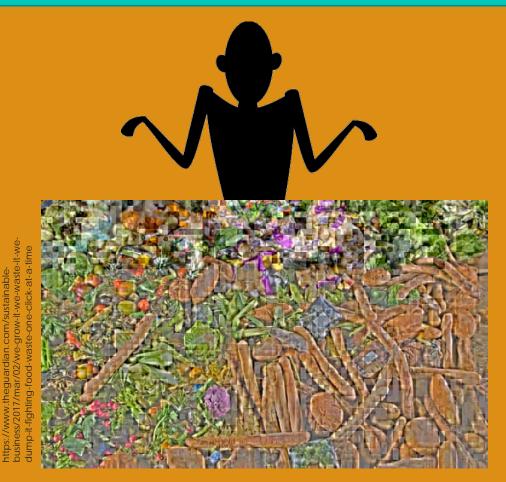
but also do it in a way that:

MHS & Associates

MHS & Associates

The <u>quality</u> of the compost end-product makes or breaks the economics of the composting facility...

The Compost End-Product


...which is, in part, by the quality of the food waste being delivered.

Northeast Resource Recovery Association School Recycling CLUB

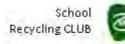

Can I Compost?

At Home?
At School?
Are there rules?

Northeast Resource Recovery Association

Yes!! With Some Rules

- Many states support backyard and community composting.
- Schools are beginning to catch on.
- High volume operations require permitting.



NRRA Photo

Northeast Resource Recovery Association

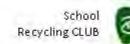
A Word About Meat and Dairy

- There are some fears around composting meats and dairy products, including attracting wild animals, smell and the spread of vectors.
- Meat and dairy may be composted along with other organics in a "hot composting" system that is controlled either in vessel or reaches high enough temperatures for long enough periods.
- Generally not recommended for at home composting systems. ¹⁰
- Commercial operations have the tools and capacity to compost "difficult" organics.

Northeast Resource Recovery Association School Recycling CLUB

- NH bans leaf and yard waste from the landfill but not food waste.
- 260 Permitted Solid Waste Facilities.¹
- 134 Take Yard Waste.¹
- 5 Landfills: Some are private
- 5 Permitted Commercial Compost ² Facilities.

3-Tiered System of Certification


1. Permit Exemptions

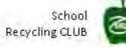
- No "solid waste"
- No Meat and Dairy
- On-Site, closed to public facilities

2. Permit By Notification (PbN)

- <30 Tons/ Day</p>
- No Meat or Dairy
- 20% cap on Food Scraps
- **3. Standard Permit**
 - >30 Tons/day
 - Meat and Dairy Allowed
 - Public Hearings, Operating and Closure Plans, etc.

Schools and farms allowed to compost on site.

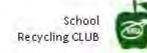
Option # 2 Transfer Station Compost Operation


What to do with organic waste?

- Backyard Composting
- Community Composting (needs permit and permission from NHDES)
- Some Transfer Stations are experimenting with residential drop off (Tier 2!).
- Some towns have residential pick up (Keene, The Seacoast, Upper Valley)

Northeast Resource Recovery Association

New Hampshire Department of Environmental Services : Backyard Composting https://www.des.nh.gov/organization/divisions/waste/swrtas/documents/compost_flier.pdf


NHDES Food Waste Composting Best Management Practices https://www.des.nh.gov/organization/divisions/waste/swmb/documents/bmp-foodcomposting.pdf

UNH Cooperative Extension Master Gardener Program https://extension.unh.edu/programs/new-hampshire-master-gardeners

NRRA School Recycling CLUB https://www.schoolrecycling.net/resources-new/composting-table-2-farm-programs/

Closing the Food Loop at School: An On-Site School Composting Guide

https://nerc.org/nercresources/search-for-resources

- Community Compost Food Scraps Sample Poster
- Community Compost Site Good Neighbor Tips
- Community Composting in Action Webinar Presentation
- Community Composting in NYC Presentation
- Community Composting Success Webinar_Team Building
- Community Composting Webinar Presentation
- Community Food Scrap Composting Training Presentation
- Community Food Waste Composting Flier Sample

Upcoming Webinars & Workshop

Webinars

- March 19 *Rethinking Recycling*, 1:30 3:00 p.m.
- March 31 Best Management Practices for Community Composting, 1:30 - 3:00 p.m.

Workshop

April 15, Using Recycled Content in Road & Infrastructure Projects, Concord, NH

